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LAGROBO is a model for fitting analytical potential energy surfaces (PES) in which the potential function
is expressed as a many-process expansion of rotating bond order (ROBO) potentials. The model is developed
in bond order (BO) coordinates and shows several advantages. In particular, it can be used to make PESs for
chemical reactions for which only limited ab initio information is available. Furthermore, it ensures a smooth
potential surface and can describe all the different arrangement channels in a many-atom system. So far the
LAGROBO model has been applied to three-atom systems. We report the formulation of the model for
four-atom reactions. As an example, an analytical PES for the OH+ H2 system has been assembled.

1. Introduction

In the quantum mechanical treatment of molecular collisions,
the electronic and nuclear parts of the Schro¨dinger equation are
solved separately via the Born-Oppenheimer approximation.
First, the electronic part is solved for a representative sample
of geometrical configurations of the nuclei in space. The
electronic potential energies so obtained are subsequently
interpolated by a function depending on the coordinates that
describe the relative positions of the nuclei. Such a function is
called the Born-Oppenheimer potential energy surface (PES).
Finally, the nuclear Schro¨dinger equation is solved, using the
PES, to derive the quantities that characterize the molecular
collision. Therefore, the construction of a reliable PES that
accurately maps the solutions of the electronic Schro¨dinger
equation is one of the three key steps in the theoretical study
of elementary chemical processes.

Recently a new approach has been developed, called direct
dynamics,1 in which the use of a PES is replaced by directly
computing the electronic potential energies as they are needed,
so that the task of fitting a PES is removed. However, this
approach presents some disadvantages. Often, calculated
potential energies must be skilfully corrected before being used
since ab initio calculations tend to give biased results for systems
with more than a few electrons. Also, calculating the potential
energy (and its derivatives, for quasiclassical trajectory calcula-
tions) from a closed function is computationally much cheaper
than carrying out electronic structure calculations. Thus, it is
generally more convenient to carry out accurate, high-quality
ab initio calculations only once and fit the potential to a function
rather than perform such calculations over and over, necessarily
with a cheaper and less accurate method. For these reasons it
is expected that the need of fitting PESs will remain in the future,
in particular when dealing with heavy atoms.

The choice of functions to fit PESs is not an easy task. Any
suitable function must gather several important characteristics.
For example, it must correctly reproduce the properties of the
whole system and of all of its fragments, it must behave
reasonably in configurations for which there is no information
about the potential energy, it must respect the symmetry of the
system if such is the case, and it must connect smoothly the

strong interaction region with the reagents and products regions.
Also, it is very desirable that the function is not only suitable
for one particular system, but has general applicability. Due
to these constraints, the number of functions for fitting PESs
for three-atom systems is limited. Among the methods used
we can recall spline interpolation,2 Shepard interpolation,3,4

distributed approximating functionals (DAF),5 London-
Eyring-Polanyi-Sato (LEPS),6 diatomics-in-molecules (DIM),7

rotated potentials,8 many-body expansions (MBE),9 double
many-body expansions (DMBE),10 reproducing kernel Hilbert
spaces (RKHS),11 and reaction path functions.12

Recently a new PES model has been introduced for three-
atom reactions, called LAGROBO (largest angle generalization
of rotating bond order).13 This model is based on a many-
process approach and is developed using bond order (BO)
coordinates.14 The LAGROBO model has been successfully
applied to several different three-body reactions: N+ N2 and
H + H2,15 O(1 D) + HCl,16 Li + FH,13 O(1 D) + CF3 Br,17 and
O(1 D) + HBr.18

When the PES for a four-atom system has to be constructed,
the difficulty in finding a suitable function increases dramatically
because of the larger dimensionality of the system (six
coordinates are required instead of three for three-atom systems).
Only the many-body expansion approach has been successful
to some extent in fitting PESs for four-atom systems.9 However,
the many-body expansion is much more difficult to apply in
the four-atom case than in the three-atom case.

In this article we report on the extension of the LAGROBO
model to make it suitable for fitting PESs for four-atom systems
while keeping the advantages that the model shows in the three-
atom case. The extended LAGROBO model has been applied
in the first instance to construct a PES for the benchmark
reaction OH+ H2 f H2O + H.

2. The ROBO Model for Four-Atom Systems

Like in the three-atom case,13 the LAGROBO model of the
PES for four-atom reactions is expressed as a many-process
expansion of rotating bond order (ROBO) reaction channel
potentials. This section is devoted to illustrate the formulation
of the ROBO potentials for four-atom systems. The many-
process expansion will be treated in section 3.* To whom correspondence should be addressed.
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Let A, B, C, and D be the atoms of the system. The ROBO
function gives the potential energy along a rearrangement
channel such as, for example, A+ BCD h AB + CB h ABC
+ D. In the remaining part of this section, for the sake of
generality, we will use the labelsκ, λ, µ, andν to designate
any possible permutation of the atoms A, B, C, and D in the
rearrangement channel described by the ROBO potential energy
function.

2.1. Coordinates. To describe the configuration of four
atoms in space, six coordinates are required. The coordinates
used in the formulation of the ROBO function dealing with the
κ + λµν h κλ + µν h κλµ + ν process are directly related to
the internuclear distancesrκλ, rλµ, andrµν and to the anglesφ,
ψ, andθ, whereφ is the angle betweenrκλ and rλµ; ψ is the
angle betweenrλµ and the projection ofrµν on the plane defined
by the atomsκ, λ, and µ; θ is the angle between that same
plane andrµν (see Figure 1). The angle betweenrλµ andrµν is
calledε. The ranges of the angles are 0e φ e π, 0 e ψ e
2π, 0 e θ e π/2, and 0e ε e π. The out-of-plane angleθ
ranges between 0 andπ/2 instead of-π/2 andπ/2 because of
the symmetry of the potential energy field with respect to the
κλµ plane. Therefore, any configuration with negativeθ can
be mirrored to its respective symmetric configuration with
positiveθ.

The formulation of the ROBO function is developed in bond
order (BO) coordinates. The concept of BO was first introduced
by Pauling in 1947.20 The definition of the BO coordinatenij

for the ij diatom is:

whererij is the internuclear distance andreqij is the equilibrium
internuclear distance.âij is a parameter related to the bond
strength of the diatom, defined as:21

whereωeij is the harmonic constant,µij is the reduced mass,
and Dij is the dissociation energy of the diatom. The BO
coordinate takes the valuesnij)0 when the atoms are infinitely
separated (rij ) ∞) andnij ) exp(âreqij) when the atoms collapse
(rij ) 0). Thus, the infinite domain of existence of the physical
coordinates is mapped into a finite domain of the BO coordi-
nates. The equilibrium distance in BO coordinates isnij ) 1
for any ij diatom. The Morse potential, which is a good
approximation to the potential of a diatomic molecule, becomes
a simple second degree polynomial when expressed in BO

coordinates:

For the four-atom systemκλµν the internuclear distancesrκλ,
rλµ, and rµν can be expressed as BO coordinatesnκλ, nλµ, and
nµν, provided that theâ andreq parameters of each diatom are
known. The BO coordinates can be subsequently transformed
into the spherical BO coordinatesF, R, andσ as follows:

The φ, ψ, andθ angles are scaled,

and likewise transformed into spherical coordinates:

The formulation of the ROBO function is developed using
the set of coordinates (F,R,σ,τ,δ,γ). The domains of existence
of these coordinates are

The F, R, andσ coordinates are related to the size of the four-
atom system:F describes the overall size of the system, whereas
R and σ describe the relative sizes of therκλ, rλµ, and rµν
internuclear distances. IfF ) 0, for any value of the remaining
coordinates, the atoms are infinitely separated from one another
and there is no interaction energy. The largerF is, the closer
the atoms are, and ifF reaches its maximum value, the four
atoms collapse at the same point. Theτ, δ, andγ coordinates
relate to the orientation of the atoms. Ifτ ) 0 the four atoms
are in collinear configuration, whatever the values of the other
coordinates. Asτ gets larger the configuration is increasingly
out of collinearity. Theδ andγ coordinates reflect the relative
magnitude ofφ, ψ, andθ for bent configurations.

2.2. Formulation. The ROBO potential for theκ + λµν h
κλ + µν h κλµ + ν process is formulated as a radial function
multiplied by an angular function plus an interaction term.

Figure 1. Definition of the rκλ, rλµ, rµν, φ, ψ, andθ coordinates in a
four-atom system.

nij ) exp[-âij(rij - reqij)] (1)

âij ) ωeij (πµij

Dij
)1/2

V(nij) ) Dij(nij
2 - 2nij) (2)

F ) (nκλ
2 + nλµ

2 + nµν
2 )1/2

R ) arctan(nµν

nκλ
) (3)

σ ) arccos(nλµ

F )
φ′ ) 2π - 2φ

ψ′ ) 2ψ - 2π

θ′ ) 4θ

τ ) (φ′2 + ψ′2 + θ′2)1/2

δ ) arctan(ψ′
θ′) (4)

γ ) (φ′
τ )

0 e F e exp[(2âκλreqκλ) + exp(2âλµreqλµ) + (2âµνreqµν)]
1/2

0 e R e π/2

0 e σ e π/2

0 e τ e 2πx3

0 e δ e π/2

0 e γ e π/2
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The radial functionF(F;R,σ,τ,δ,γ) contains the dependence of
the ROBO function along the radial coordinateF. It also
depends parametrically on the other coordinates. Analogous
to the Morse potential in BO coordinates (2), the radial function
is given as a second-degree polynomial ofF:

At F ) 0 the radial function takes the value 0 (the zero potential
energy of the PES is chosen to be that of the full dissociation
configurationκ + λ + µ + ν) and it has a maximum atF )
F0(R,σ;τ,δ,γ), where it takes the value 1. This polynomial has
opposite sign to that of the Morse polynomial (2) (i.e., it has a
maximum rather than a minimum) because the due negative
sign is provided by the angular function by which it is
multiplied.

The angular functionD(R,σ;τ,δ,γ) depends on the angular
coordinatesR andσ and, parametrically, onτ, δ, andγ. The
angular function is the minimum energy surface along theR
and σ coordinates and it is situated atF ) F0(R,σ;τ,δ,γ) for
any fixed orientation determined byτ, δ, andγ. The minimum
energy surface links the transition state, in the strong interaction
region, and the asymptotic states atom+ triatom, atom+ atom
+ diatom, and diatom+ diatom. The asymptotic configurations
κλ + µ + ν, κλ + µν andκ + λ + µν are located at the points
(R ) 0, σ ) π/2), (R ) π/4, σ ) π/2), and (R ) π/2, σ ) π/2),
respectively. The configurationκ + λµ + ν is located atσ )
0 for any value ofR. TheD(R,σ;τ,δ,γ) function is plotted in
Figure 2 against theR andσ coordinates forτ, δ, andγ fixed.
Since the zero potential energy has been chosen to be at the
full dissociation configuration the minimum energy surface must
have negative value all over the (R,σ) plane.

The F0(R,σ;τ,δ,γ) function gives the value of the radial
coordinate at which the minimum energy surfaceD(R,σ;τ,δ,γ)
is located for all the asymptotic configurations and the strong
interaction region. TheF0(R,σ;τ,δ,γ) function is plotted in
Figure 3.

For any value ofτ, δ, and γ and for whatever four-atom
system, the values of theD(R,σ;τ,δ,γ) and F0(R,σ;τ,δ,γ)
functions at the atom+ atom+ diatom and diatom+ diatom
configurations are

whereDij is the dissociation energy of theij diatom.
For the triatom+ atom asymptotic configurations,κλµ + ν

and κ + λµν, the potential energy of the minimum energy
surface is given by the functionsDκλµ(φ) andDλµν(ε) and the
position of the minimum energy surface along theF coordinate
is given by the functionsF0κλµ(φ) andF0λµν(ε). These functions
can be expressed as sixth-degree polynomials ofφ andε:

The κλµ + ν andκ + λµν configurations are located at (R )
0, σ ) σκλµ) and (R ) π/2, σ ) σλµν), respectively, in the (R,σ)
plane. σκλµ andσλµν depend also onφ andε, and they can also
be expressed as polynomials

Figure 2. Minimum energy surfaceD(R,σ;τ,δ,γ) of the OH + H2

LAGROBO PES plotted againstR andσ at fixed values ofτ, δ, andγ
corresponding to the transition state. The minimum energy path from
OH + H2 to H2O + H is indicated in the contour map by an arrow.

Figure 3. Radial coordinateF0(R,σ;τ,δ,γ) of the OH+H2 LAGROBO
PES plotted againstR andσ at fixed values ofτ, δ, andγ corresponding
to the transition state.

D(R ) any,σ ) 0; τ,δ,γ) ) -Dλµ

D(R ) 0, σ ) π/2; τ,δ,γ) ) -Dκλ

D(R ) π/4, σ ) π/2; τ,δ,γ) ) -Dκλ - Dµν

D(R ) π/2, σ ) π/2; τ,δ,γ) ) -Dµν

F0(R ) any,σ ) 0; τ,δ,γ) ) 1

F0(R ) 0, σ ) π/2; τ,δ,γ) ) 1

F0(R ) π/4, σ ) π/2; τ,δ,γ) ) x2
F0(R ) π/2, σ ) π/2; τ,δ,γ) ) 1

F0(R ) 0, σ ) σκλµ;τ,δ,γ) ) F0,κλµ(φ) ) ∑
i)0

6

ci
(7)

φ
i (7)

F0(R ) π/2, σ ) σλµν;τ,δ,γ) ) F0,λµν(ε) ) ∑
i)0

6

ci
(8)

ε
i (8)

D(R ) 0, σ ) σκλµ;τ,δ,γ) ) Dκλµ(φ) ) ∑
i)0

6

ci
(9)

φ
i (9)

D(R ) π/2, σ ) σλµν;τ,δ,γ) ) Dλµν(ε) ) ∑
i)0

6

ci
(10)

ε
i (10)

VROBO(F,R,σ,τ,δ,γ) ) F(F;R,σ,τ,δ,γ)D(R,σ;τ,δ,γ) +
I(nκν, nj) (5)

F(F;R,σ,τ,δ,γ) ) - F2

F0(R,σ;τ,δ,γ)2
+ 2F

F0(R,σ;τ,δ,γ)
(6)
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The potential energy andF0, R, andσ of the transition state
at any fixed orientation are given by the functionsDTS(τ;δ,γ),
F0TS(τ;δ,γ), σTS(τ;δ,γ), andRTS(τ;δ,γ). The dependence of these
functions onτ is obtained by interpolating their values atτ )
0, τ ) τ1, andτ ) τ2. These functions atτ ) 0 (i.e., the values
at the collinear configuration) are constants, independent from
δ and γ, but at τ1 and τ2 they depend onδ and γ. This
dependence is expressed as a Fourier series ofγ whose
coefficients are polynomials ofδ:

The expressions forDTS,τ2 (γ,δ) andF0TS,τ2 (γ,δ) are analogous
to (13-16). In general, it is convenient to chooseτ1 to be that
of the transition state, when it is not collinear, andτ2 ) 2τ1.

Finally, the values ofD(R,σ;τ,δ,γ) andF0(R,σ;τ,δ,γ) at any
point of the (R,σ) plane are not obtained from any function,
but by interpolating their values at the six asymptotic configura-
tions (atom+ atom+ diatom, diatom+ diatom, and atom+
triatom) and at the transition state, for any set ofτ, δ, andγ.

If the internuclear distancesrκλ and rµν are large but the
distancerκν is short enough to prevent theκ-ν interaction from
being negligible, it happens that the productFD of (5) is unable
to take into account the interaction between atomsκ and ν.
Therefore, it is necessary to add a term, theI(nκν;nj) function,
that accounts for that interaction, but that becomes zero when
rκλ andrµν are not large. Of course, ifrκν is large theI(nκν;nj)
function must be zero as well. The expression of this function
is

Dκν is the dissociation energy of theκν diatom; nj ) (nκλ +
nµν)/2 andS(nj) is a damping function,

wherep is a parameter that must be tuned to make the termsI
andFD match smoothly.

3. Many-Process Approach

The LAGROBO potential energy function is given as a many-
process expansion. This means that the LAGROBO function

is a linear combination of potential energy functions for different
rearrangement channels of the four atoms of the system. In
the three-atom case there are only three possible rearrangement
channels between asymptotic configurations.13 In the four-atom
case, the number of rearrangement channels is 12. In each
rearrangement channel the atoms A, B, C, and D can be labeled
as κ, λ, µ, and ν, such as in the previous section, using all
possible nonequivalent permutations, so that for all channels
we always deal with the rearrangementκ + λµν h κλ + µν h
κλµ + ν. A suitable choice of the rearrangement channels might
be as indicated in Table 1.

The LAGROBO function of the potential energy surface is

where Vi
ROBO(Fi,Ri,σi,τi,δi,γi) is the ROBO potential energy

function of channeli. Of course, the set of ROBO coordinates
on which the ROBO function depends is defined in a different
way for each channel, since the internuclear distances and angles
from which the ROBO coordinates are obtained are different.

The ROBO contributions are multiplied by a normalized
weighting function depending onφ, ε, F, R, andσ. The purpose
of the weighting function is to privilege the ROBO contributions
to the global potential which are closer to collinear configura-
tions and cut off those corresponding to very bent configurations
(hence the name LAGROBO: largest angle generalization of
rotating bond order). The reason to do so is that the closer to
collinearity the atoms are in the rearrangement channel the more
suitable the ROBO function is to describe the potential energy
of the rearrangement channel.

The degree of collinearity of the four atoms is obtained from
the anglesφ andε. The weighting function should be 1 (i.e.,
maximum) if bothφ andε are close toπ, and it should be 0 if
either angle is small (say less thanπ/6), ranging from 0 to 1
for intermediate situations. The weighting function before
normalization,W(φ,ε,F,R,σ), is factorized as the product of two
switching functions depending onφ andε, respectively,

TheWφ(φ,F,R,σ) andWε(ε,F,R,σ) functions could in principle
be given as sine-like functions depending on eitherφ or ε as
follows:

σκλµ(φ) ) ∑
i)0

6

ci
(11)

φ
i (11)

σλµν(ε) ) ∑
i)0

6

ci
(12)

ε
i (12)

DTS,τ1
(γ;δ) )

c0
(13)(δ)

2
+ ∑

l)2,4,6,8

[cl-1
(13)(δ) sin(lγ) +

cl
(13)(δ) cos(lγ)] (13)

ci
(13)(δ) ) ∑

j)0

6

cij
(14)δj i ) 0,...,8 (14)

F0TS,τ1
(γ;δ) )

c0
(15)(δ)

2
+ ∑

l)2,4,6,8

[cl-1
(15)(δ) sin(lγ) +

cl
(15)(δ) cos(lγ)] (15)

ci
(15)(δ) ) ∑

j)0

6

cij
(16)δj i ) 0,...,8 (16)

I (nκν; nj) ) DκνS(nj) (nκν
2 - 2nκν) (17)

S(nj) ) {1 + cos(πnj+p
2p ) if nj < p

0 if nj g p

TABLE 1: Permutations for All the Rearrangement
Channelsa

Channel A B C D κ λ µ ν

1 κ λ µ ν A B C D
2 κ λ ν µ A B D C
3 κ µ λ ν A C B D
4 κ µ ν λ A D B C
5 κ ν λ µ A C D B
6 κ ν µ λ A D C B
7 λ κ µ ν B A C D
8 λ κ ν µ B A D C
9 λ µ κ ν C A B D

10 λ ν κ µ C A D B
11 µ κ λ ν B C A D
12 µ λ κ ν C B A D

a First column: rearrangement channel. Second to fifth columns:
labels (κ, λ, µ, andν) assigned to the A, B, C, and D atoms. Sixth to
ninth columns: atoms (A, B, C, and D) whose labels areκ, λ, µ, and
ν.

V )

∑
i)1

12

W(φi,εi,Fi,Ri,σi)Vi
ROBO(Fi,Ri,σi,τi,δi,γi)

∑
i)1

12

W(φi,εi,Fi,Ri,σi)

(18)

W(φ,ε,F,R,σ) ) Wφ(φ,F,R,σ)Wε(ε,F,R,σ) (19)
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However, for configurationsκλµ + ν (i.e.,R f 0, σ < π/2 and
F > 0) the weighting function (19) must depend only onφ.
Since theν atom is far apart fromκλµ the potential must be
independent of its position with respectκλµ (that is, independent
of ε), and therefore,Wε(ε,F,R,σ) must be 1 for any value ofε
whereasWφ(φ,F,R,σ) keeps a sine-like dependence onφ.
Likewise, for configurationsκ + λµν (i.e., R f π/2, σ < π/2,
and F > 0), Wφ(φ,F,R,σ) must be 1 for any value ofφ while
Wε(ε,F,R,σ) is sine-like. Thus, the functionsWφ(φ,F,R,σ) and
Wε(ε,F,R,σ) are like the functionw(x) above, but forced to be 1
at the proper values ofR, σ, and F by means of switching
functions on each coordinate:

The switching functions onR, σ, andF are simple Gaussian or
hyperbolic tangent functions:

For any four-atom system, the following values for the
parameters of the weighting function are appropriate:f ) 11.0,
xm ) 1.6, xl ) 0.5, xo ) 1.35,Fl ) 0.01,σl ) 1.370796,ê )
300,aσ ) 690, andaF ) 2.76× 105. A plot of the weighting
function against theφ andε angles atR ) π/4, σ < π/2 andF
> 0 is shown in Figure 4.

4. Application to the OH + H2 System

The formulation of section 3 is appropriate for any four-atom
reaction. Here the method is applied to the OH+ H2 fH2O
+ H reaction. This reaction has become a benchmark in the
four-atom molecular collision theory (see ref 22 and references
therein). It is also relevant in combustion, atmospheric chem-
istry and astrochemistry. Despite the importance of this reaction
there have been few attempts to assemble a PES so far. The
first analytical PES for OH+ H2 was made by Schatz and
Elgersma in 1980.23 This PES is a many-body expansion with
a very simple formulation and it has been used widely by many
researchers. However, it has several flaws. The PES has an
spurious well in the OH+H2 entrance region, which was
corrected later.24 Also, it does not describe well the potential
and vibrational energy levels for H2O. Finally, Schatz and
Elgersma’s PES does not describe the full symmetry of the
OH+H2 system. The hydrogen atoms are not indistinguishable,

as they must be, and only one hydrogen atom of H2 is allowed
to react to give H2O+H.

Isaacson25 developed a PES function for four-atom systems
consisting of two valence bond three-body terms plus some
quadratic and cubic terms involving the bending and torsional
angles. Some parameters of the model vary along the reaction
path, so that the model provides a useful global PES at least
along the minimun energy path. Isaacson fitted several versions
of the PES for OH+ H2 using ab initio data by Dunning et al.
On these PES, he calculated rate coefficients by canonical
variational transition state theory and conventional transition
state theory.

Recently, another PES was built by Kliesch et al.26 from new
ab initio calculations. This potential does fit the frequencies
and geometries of the transition state well, but is not appropiate
for out-of-plane geometries away from the transition state.
Furthermore, it does not describe the full symmetry of the OH
+ H2 system.

Jordan and Collins4 have also assembled a PES for OH+
H2, but it does not have chemical accuracy since it has been
made out of unrestricted Hartree-Fock level ab initio calcula-
tions.

We have used the LAGROBO model described above to build
a new PES for OH+ H2 that fits the same ab initio data used
by Kliesch. Information on the ab initio calculations can be
found in ref 26.

Like in any four-atom system, there are twelve rearrangement
channels in the OH+ H2 system. However, since the hydrogen
atoms can be considered as indistinguishable, the number of
different rearrangement channels can be reduced to two:

Therefore, to assemble a LAGROBO PES it is necessary to
obtain only two different sets of parameters for the ROBO
functions rather than twelve. In addition, it must be noticed
that the only process that actually takes place is OH+ H2 h
H2O + H, described by the ROBO function of channel (21),
whereas channel (20) can be considered closed for most practical
purposes. As a consequence, only the parameters characterizing
the strong interaction region of the ROBO function for channel
(21) must be worked out carefully. For channel (20) it is enough
to set up parameters that give any reasonably high potential in
the strong interaction region, since it does not make any
difference in the results when the PES is used for calculations
of reactivity. Although the sets of parameters for OH+ H2

can be reduced from twelve to only two, the summation (18)
must still span twelve rearrangement channels so that the

w(x) )

{0 if x e xl

1
2[1 + sin(-

π(x-xo)

2(xl-xo))] exp[-f(x - xm)2] if xl < x < xm

1
2[1 + sin(-

π(x-xo)

2(xl-xo))] if xm < x < 2xo + xl

1 if 2xo + xl e x

Wφ(φ,F,R,σ) ) w(φ) + [1 - w(φ)]Aφ(R)B(σ)C(F)

Wε(ε,F,R,σ) ) w(ε) + [1 - w(ε)]Aε(R)B(σ)C(F)

Aφ(R) ) 1 + tanh[ê(R - π/2)]

Aε(R) ) 1 - tanh(êR)

B(σ) ) {1 if σ e σl

exp[-aσ(σ - σl)
2] if σ > σl

C(F) ) {1 if F g Fl

exp[-aF(F - Fl)
2] if F < Fl

Figure 4. Weighting functionW(φ,ε,F,R,σ) plotted against theφ and
ε angles atR ) π/4, σ < π/2, andF > 0.

O + HHH h OH + HH h OHH + H (20)

H + OHH h HO + HH h HOH + H (21)
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symmetry properties of the highly symmetric OH+ H2 system
can be fully preserved in the PES. Note that although channel
(20) is closed, its asymptotic zone of OH+H2 is accessible.

The properties of the diatomic fragments used in the
assemblage of the PES are taken from experimental informa-
tion27 and are listed in Table 2. The LAGROBO PES exactly
reproduces these properties and converges to Morse potentials
for the diatomic fragments OH and H2 in the asymptotic
configurations. In general, Morse potentials for the diatoms
are a good enough approximation for the purpose of reactive
dynamics. For the OH+ H2 reaction this assumption holds
even better, since few vibrational levels are open at the total
energies considered in calculations of reaction probabilities and
rate constants. Nevertheless, if a better representation of the
diatomic potentials were required it could be obtained using a
higher degree polynomial ofF in (6).

The geometry of H2O in the LAGROBO PES isrOH ) 0.9577
Å and HÔH ) 104.30°, in close agreement with the experi-
mental geometry (rOH ) 0.9572 Å and HOˆ H ) 104.52°), and
its energy is 62.505 kJ/mol below that of the HO+H2 entrance
channel. The vibrational frequencies of H2O in the PES arew1

) 1595 cm-1, w2 ) 3654 cm-1, andw3 ) 3764 cm-1, whereas
the experimental frequencies are 1595, 3657, and 3756 cm-1

for the bend, symmetric, and asymmetric stretch vibrations,
respectively.28 The energies of the low-lying vibrational levels
of H2O do not show Fermi resonances, unlike the Schatz-
Elgersma surface.23

The minimum energy path of the LAGROBO PES shows a
barrier of 24.218 kJ/mol between reactants and products. The
geometry of the transition state is planar and noncollinear. The
properties of the transition state of the LAGROBO PES
(geometry, energy, and frequencies) are given in Table 3, along
with the properties obtained in the ab initio calculation. The
minimum energy surface for theφ, ψ, and θ angles of the
transition state is depicted in Figure 2. The minimum energy
path from OH+ H2 to H2O + H, containing the transition state,
is tracked by an arrow in the underlying contour map.

The local minimum corresponding to the D3h symmetric
configuration of H3O has a bond length ofrOH ) 0.9602 Å and
an energy of 35.600 kJ/mol below that of the OH+ H2

configuration. It is separated from the H2O + H asymptotic
channel by a small barrier, 0.280 kJ/mol high. However, these

features may not correspond to the true values, since we did
not have ab initio data on the D3h configuration to which fit the
PES.

In the entrance channel of the OH+ H2 PES there should be
a very shallow well, 2.250 kJ/mol deep, corresponding to the
Van der Waals bond between OH and H2, in which the OH
and H2 molecules are perpendicular, with the H-side of OH
pointing at the center of the H2 bond.29 This feature has not
been included in the present version of the PES as it is intended
for carrying out reactive scattering calculations. However, it
should be straightforward to modify the entrance channel
potential in the future to include this feature.

The new PES is being used to study theoretically the OH+
H2 f H2O + H reaction with quasiclassical trajectories, reduced
dimensionality quantum methods and exact quantum methods.
A detailed report on these results will be given elsewhere.30

Due to lack of space and in order to keep the explanation of
the LAGROBO model simple some of the less important details
of the formulation in section 2.2 have not been given, neither
are given the numeric values of the parameters for the OH+
H2 LAGROBO PES. However, the FORTRAN code of the
PES is available on request.31

5. Remarks on the LAGROBO model

In the previous sections the formulation of the LAGROBO
model for four-atom systems is described, along with its
application to the OH+H2 system. However, since it is difficult
to convey the advantages of the model just by giving its
mathematical formulation, it is worth emphasizing here some
of the features of the model that make it a valuable tool in the
theoretical study of elementary reactions.

The mathematical formulation of the LAGROBO model is
based largely on functions with clear physical meaning, like
the polynomic dependence of the potential onF, the minimun
energy paths in the three-atom case or the minimum energy
surfaces in the four-atom case, for instance. As a consequence,
the procedure for fitting the surface is not a blind algorithm in
which only the final global potential energy function has
meaning. Rather, during the fitting procedure it is known how
every function of the model relates to the global potential energy
function and the role that the different parameters play in the
functions of the model are clear.

The LAGROBO model can guarantee that the PES does not
have spurious structures and that it is continuous and smooth
in the whole domain of configurations, even in zones for which
there is no ab initio information about the potential energy. Also,
as long as correct values for the properties of the diatoms (and
triatoms, in the four-atom systems) are used in the data, the
ergicity between reagents and products will be always correct
for all rearrangement channels in all systems. This feature is
not guaranteed in other methods and it has been cause of major
flaws in other PESs.

Once enough information about the potential energy of a
system has been gathered it is a straightforward task to fit the
LAGROBO function. As the parameters have clear physical
meaning, their determination is not computer time-consuming,
since the fitting is not carried out by any iterative technique.

The aim of the LAGROBO method is to provide a smooth
PES that is easy to use in reaction dynamics calculations and
has a good accuracy for the energetics and properties of the
reactants, products and transition state. For reactive scattering
the quality of the surface is critically dependent on the accuracy
in reproducing the properties of the transition state calculated

TABLE 2: Spectroscopic Parameters of the Diatomic
Molecules of the OH+ H2 System

OH H2

req (Å) 0.96966 0.74144
De (kJ/mol) 445.374 458.021
ωe (cm-1) 3737.76 4401.21
ωe xe (cm-1) 84.881 121.33
â (Å-1) 2.296 1.94429

TABLE 3: Transition State Properties

ab initio26 LAGROBO

rHO (Å) 0.9716 0.9698
rOH′ (Å) 1.3558 1.3552
rH′H′ (Å) 0.8202 0.8224
φ (degree) 97.10 95.10
ψ (degree) 161.47 160.76
θ (degree) 0.00 0.00
barrier (kJ/mol) 24.218 24.218
ω1 (cm-1) 487 474
ω2 (cm-1) 576 818
ω3 (cm-1) 1072 1104
ω4 (cm-1) 2609 2585
ω5 (cm-1) 3729 3507
ωi (cm-1) 1197 1102

9636 J. Phys. Chem. A, Vol. 102, No. 47, 1998 Ochoa de Aspuru and Clary



by ab initio means. For zones of the strong interaction region
away from the transition state the method is able to provide a
shape of the PES in reasonable agreement with ab initio
information, if such is available.

Some of the advantages of the LAGROBO model become
evident when it is applied to four-atom systems. It is particularly
important that the model allows fitting feasible and smooth PESs
out of little ab initio information and that it treats the full
symmetry of the system. The calculation of ab initio points of
the potential energy is a very expensive task in terms of
computing time, particularly when atoms with high atomic
number are involved. For any given fixed resolution of the
potential energy surface the number of points to be calculated
increases exponentially with the number of dimensions. Thus,
such number isN3 for a three-atom system andN6 for a four-
atom system, whereN is the number of points per dimension.
Methods that require a large number of ab initio points of even
resolution all over the surface to fit an analytical function are
very difficult to apply when either the number of atoms of the
system or their atomic numbers increase. For four-atom systems
the availability of a method that keeps the number of ab initio
points low may be not only a major advantage, but crucial to
the possibility of assembling a PES.

For these reasons we think that the LAGROBO method will
be of great help in developing PESs for four-atom systems
beyond OH+ H2. For example, at the time of writing the
LAGROBO model is being applied to build a PES for the OH
+ HCl reaction.32
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